Notes on Ratios, Rates, and Proportions

ratio-A comparison of two numbers or quantities. They are measured in the same or similar units.

Example: If the ratio of adults to children is 2 to 5 , then there are two adults for every 5 children. So, if there are 50 children in attendance, then there are 20 adults.

Ratios can be written in three ways: 2 to 5
2:5
$\frac{2}{5}$
rate-A special ratio that compares two quantities measured in different types of units.

Example: The water dripped at a rate of 2 liters every 3 hours $\rightarrow \frac{2 \mathrm{~L}}{3 \text { hours }}$
unit rate-a rate with a denominator of 1 .

Example: Shelby drove $70 \mathrm{mph} . \rightarrow \frac{70 \mathrm{miles}}{1 \text { hour }}$
proportion-An equation of two equivalent ratios.
Example: a 10 pound bag of $M \& M s$ costs $\$ 8$. How much does each pound of $M \& M s$ cost?
$\frac{\$ 8}{10 \text { pounds }}=\frac{\$ x}{1 \text { pound }}$
$x=\$ 0.80$

The M\&Ms cost $\$ 0.80$ per pound.
equivalent proportions-proportions that are essentially the same although they look a little different.

How can you tell if proportions are equivalent? The values that are diagonal are the same.
Example: $\frac{\$ 37}{100 \%}=\frac{x}{70 \%} \quad$ is equivalent to $\quad \frac{\$ 37}{x}=\frac{100 \%}{70 \%} \quad$ and $\quad \frac{x}{\$ 37}=\frac{70 \%}{100 \%}$
but they are NOT equivalent to $\frac{\$ 37}{x}=\frac{70 \%}{100 \%}$

Note: the equivalent proportions all have $\$ 37$ diagonal to 70% and x diagonal to 100%. The proportion that is not equivalent does not have this quality.

Solving proportions

You can solve a proportion many ways. First remove the units.
Example $1 \quad \frac{\$ 37}{100 \%}=\frac{x}{70 \%} \rightarrow \frac{37}{100}=\frac{x}{70}$
Now solve algebraically.

$$
70 \cdot \frac{37}{100}=\frac{x}{70} \cdot 70
$$

$770 \cdot \frac{37}{{ }^{10} 100}=\frac{x}{7 \sigma_{1}} \cdot 70^{1}$
$\frac{259}{10}=x$

$25.9=x$
$x=\$ 25.90$
$\underline{\text { Example } 2} \frac{\$ 50}{3 \text { hours }}=\frac{\$ 250}{x \text { hours }} \rightarrow \frac{50}{3}=\frac{250}{x}$

Again, start by removing the units and solving algebraically.

$$
x \cdot \frac{50}{3}=\frac{250}{x} \cdot x
$$

$$
x \cdot \frac{50}{3}=\frac{250}{\not x_{1}} \cdot \not x_{1}
$$

$$
\frac{50 x}{3}=250
$$

$$
\frac{3}{50} \cdot \frac{50 x}{3}=250 \cdot \frac{3}{50}
$$

$$
\frac{1 / 3}{150} \cdot \frac{50^{1} x}{\not \beta_{1}^{\prime}}={ }^{5} 250 \cdot \frac{3}{50_{1}}
$$

Note: A shortcut here is to use the Giant One and write equivalent ratios.

$$
\frac{50^{-5}}{3_{.5}}=\frac{250}{x} \rightarrow x=15
$$

Note: The same can be done vertically. Imagine the equivalent proportion:

$$
\frac{50}{250}=\frac{3}{x}
$$

We can see that if we multiply the numerator by 5 , we get the denominator. So, we do this on both sides of the proportion.

$$
x=15
$$

$\underline{\text { Example } 3} \frac{3 x+2 \text { miles }}{14 \text { hours }}=\frac{x-5 \text { miles }}{9 \text { hours }} \rightarrow \frac{3 x+2}{14}=\frac{x-5}{9}$
Again, start by removing the units and then solve algebraically.
$9 \cdot \frac{3 x+2}{14}=\frac{x-5}{9} \cdot 9$
$\frac{9(3 x+2)}{14}=\frac{x-5}{\not \Phi_{1}} \cdot \not \varnothing_{1}$
$\frac{27 x+18}{14}=x-5$

Now multiply both sides of the equation by 14 .
$14 \cdot \frac{27 x+18}{14}=(x-5) \cdot 14$
Note: A shortcut here is to multiply the values on the two diagonals. From there, solve like usual.
$\frac{3 x+2}{14}=\frac{x-5}{9}$
$9(3 x+2)=14(x-5)$
$27 x+18=14 x-70$
$x=-6 \frac{10}{13}$
$27 x+18=14 x-70$
$-14 x \quad-14 x$
$13 x+18=-70$
$-18 \quad-18$
$13 x=-88$
$\frac{13 x}{13}=\frac{-88}{13}$
$x=-6 \frac{10}{13}$

Note on shortcuts: The shortcut in Example 3 is a commonly used shortcut. It is often referred to as "cross multiplying".

Graphing proportions

We can graph our information on a coordinate graph. One unit is on the x -axis and the other is on the y axis.

Examples:
A lamp is originally $\$ 148$.
(a) It is on sale for 20% off. What is the discount?
(b) It is on sale for 20% off. What is the new cost?
(c) It is now $\$ 100$; what percent are you paying now?
(d) It is now $\$ 100$; what percent do you save?
(e) You have a coupon for $\$ 40$ off. What percent do you save?
(f) You have a coupon for $\$ 40$ off. What percent are you paying now?

Let's put this information in a table, SOLVE USING PROPORTIONS, and then graph it.

\% (percents)	100	20	80					\mathbf{x}
$\$$ (dollars)	148			100	48	40	108	\mathbf{y}

\% (percents)	100	20	80	$67 . \overline{567}$	$32 . \overline{432}$	$27 . \overline{027}$	$72 . \overline{972}$	\mathbf{x}
$\mathbf{\$}$ (dollars)	148	$\mathbf{2 9 . 6 0}$	$\mathbf{1 1 8 . 4 0}$	100	48	40	108	\mathbf{y}

Proportional relationships, when graphed, are linear and pass through the origin, (0,0).

